Oxygen Chemistry on Dust Grains

National Science Foundation

Gianfranco Vidali and

Jiao He, Tyler Hopkins, Jianming Shi Syracuse University Syracuse, NY (USA)

> Jean Louis Lemaire Paris Observatoire, Paris (France)

Michael Kaufman San Jose' State University San Jose', CA (USA)

Rob Garrod, Cornell University Ithaca, NY (USA)

Outline

Introduction

- Oxygen in space: the abundance puzzle
- Oxygen chemistry on grains
- Oxygen on dust grains: recent experiments and theoretical simulations
 - 1. Water formation on grains
 - 2. Atomic oxygen on dust grains
 - 3. Formation of precursors to amino acids

Oxygen Chemistry in Space: the Abundance Puzzle Molecular oxygen in dense clouds

- Gas-phase models for O_2 : 7 x 10⁻⁵ (Woodall et al 2007)
- Observations
 - < 10^{.7} Odin dark clouds (Pagani et al. 2003; Larsson et al. 2007)
 - < 6 10^{.9} Herschel WIFI low mass protostar (Yildiz et al 2013)
 - $5 \times 10^{-8} \rho$ Oph A (Larsson et al. 2007; Liseau et al. 2012)
 - No detection towards the Orion Bar (Melnick et al. 2012)

Oxygen Chemistry in Space: the Abundance Puzzle Oxygen in the Universe

Figure 3 from Oxygen Depletion in the Interstellar Medium: Implications for Grain Models and the Distribution of Elemental Oxygen X(O)/X(H)=550 ppm (solar) D. C. B. Whittet 2010 ApJ 710 1009

- O, O₂ the gas-phase; (CO, CO₂)
- Oxygen in grains (silicates)
- Oxygen in water ice on grains
- Hydrated silicates

. . .

- On large grains (>1 μm)
- O on/in carbonaceous grains (Whittet 2010)

Oxygen Chemistry in Space Observation of Water in Space

Interstellar Water Chemistry: From Laboratory to Observations Ewine F. van Dishoeck, Eric Herbst, and David A. Neufeld Chemical Reviews (2013) 113, 9043

Rotational lines, towards Orion KL MC Melnick, G. J.; et al. A&A. 2010, 521, L27

Choi et al. A&A 572, L10 (2015) OPR<1 in Orion PDR

Yabishita et al., ApJ, 699, L80 (2009)

van Dishoeck, E. F.; et al. Publ. Astron. Soc. Pac. 2011, 123, 138. Oxygen Chemistry in Space

Formation of Water in Space: 3 Routes

1. Gas-phase at low temperature (<250 K) - cold molecular clouds

$$\begin{array}{l} H_{3}O^{+}+e^{-} \rightarrow H+H_{2}O \\ \rightarrow OH+H_{2} \\ \rightarrow OH+2H \\ \rightarrow O+H+H_{2} \\ (H+O\rightarrow OH \\ OH+H \rightarrow O_{2}+H \end{array}$$

2. Gas phase at high temperature (>300 K) – inner parts of protoplanetary disks, shocks

 $O+H_2 \rightarrow OH+H (E_a = 3,160K)$ $OH+H_2 \rightarrow H_2O+H (E_a = 1,660K)$

 But these reactions are not efficient enough to explain the abundance of water and ices

Water Formation on Dust Grains Formation of Water in Space

• 3. Formation of water on dust grains

Water Formation on Dust Grains Earlier investigations in the laboratory:

Prior experiments (see also Vidali, J. Low Temp. Phys. (2013) 170, 1; T. Hama & N.Watanabe Chem. Rev. 113, 8783 (2013))

• O₂ Channel

- Miyauchi et al. (2008) 456 (2008) 27: H+O₂ at 10 K gives H₂O and H₂O₂; H flux of 2 10¹⁴ atoms/s/cm² on 8 ML of O₂.
- loppolo et al., ApJ 686, 1474 (2008); PCCP 12, 12065 (2010); H+O₂ at 12-28 K gives H₂O and H₂O₂ and O₃; H flux 2.5 10¹² atoms/cm²/s on 15ML of O₂.

• O₃ channel

- Mokrane et al. ApJ 795, L195 (2009) H_2O formation with H reacting with O_3 on non-porous amorphous ice
- Romanzin et al. JCP 134, 084594 (2011) 0₂ + 0 → 0₃; 0₃+H→H₂O+O₂ (25 to 50 K) H flux of 8 10¹³ atoms/cm²/s; 0₃ is deposited.
- Bennett & Kaiser: 5 keV e beam in ice

OH channel

Oba et al., PCCP 13, 15792 (2011); ApJ 749, 12 (2012) H₂O dissociation: OH +H₂ +H +O+O₂; OH + OH → H₂O + O; OH +H₂ tunneling at 10 K; flux ~10¹³ atoms/s/cm² on Al (?) substrate at 10 – 50 K

O channel

- Dulieu et al. A&A 512, 30 (2010) H+O on porous amorphous water ice at 10 K
- Jing et al. ApJ 741, L9 (2011) H+O on a bare amorphous silicate surface at 15K

Water Formation on Dust Grains Simulation of ISM chemistry

Steady-state PDR (Hollenbach et al. 2009)

onset of ices on grains

Water Formation on Dust Grains Formation of water on warm grains

- Ices form in regions with $A_v > 2.3$
- In Av<3 regions, T_{grain}>25 K; no O₂ on surface // Glassgold et al. 2012

 \rightarrow Water forms by hydrogenation of O

- $0+H \rightarrow OH OH+H \rightarrow H_2O$
- or O_3 ,
- $O_3+H \rightarrow OH+O_2 OH+O \rightarrow H_2O$
- What's the residence time of O, OH and O_3 ? t ~ $\tau_0 e^{E/kT}$
- Program at Syracuse University:
 - Study water formation at T_{grain} >25K via O+H, O₃+H
 - What's the residence time of O, OH and O_3 ? $t \sim \tau_0 e^{E/kT} \rightarrow Measure E_b$ for O, OH, O_3

Water Formation on Dust Grains Apparatus at Syracuse University

Water Formation on Dust Grains Apparatus Highlights

- Main Chamber: Ultra-High vacuum as low as 5 x 10⁻¹¹ Torr; operating pressure 1-2 x10 ⁻¹⁰ torr
- Sample temperature adjustable from 6K to 400K; rotatable sample
- Two highly collimated beam lines allowing studies of complex reactions with the <u>operating</u> <u>pressure</u> in the main chamber in the low 10^{.10} torr
- Reflection-adsorption-infrared-spectroscopy (RAIRS)
- Rotatable Quadrupole mass spectrometer (QMS) to measure in-coming reactants and out-going products
- Sputter Gun
- Auger
- Low energy electron diffraction (LEED)

Water Formation on Dust Grains Sample Preparation and Characterization

Amorphous silicate prepared and characterized by Dr. Brucato (Astrophys. Obs. Arcetri) EB-PVD

Study of cleaning by sputtering

Jing et al. J.Phys.Chem. A117, 3009 (2013)

Water Formation on Dust Grains

Water Formation via $H/D + O_3$ Reaction at 50 K

J.He & G.Vidali ApJ 788, 50 (2014)

Water Formation on Dust Grains Water formation

$H+O_3 \rightarrow OH+O_2 \quad OH+H \rightarrow H_2O$

- mass 20: H_2O from OH+H, $OH+H_2$
- mass 19: OH from $OH+O_2$ and H_2O frag.

► $D+O_3 \rightarrow OD+O_2$

- mass 22: D₂O from OD+D, OD+D₂
- mass 20: OD from $OD+O_2$ and D_2O frag.
- mass 21: HDO from OD+H₂

mass 36: O_2 and O_3 from break-up of ozone in ionizer

Water Formation on Dust Grains Results

 H on O₃ experiment: H+O₃→OH+O₂ and OH is readily converted to water

 D on O₃ experiment: slower conversion of OD to D₂O → isotope effect

Oxygen Chemistry in Space: the abundance puzzle O_2 toward the Orion Bar

 Non detection of O₂ (<10^{.7}) in search toward the Orion Bar (Melnick et al. Ap.J 752, 56 (2012))

- Steady-state PDR model (Hollenbach et al. Ap.J 690, 1497 (2009))
 - They used: binding energy of O on grains $E_b=800K$ (Tielens and Hagen, 1987)
- For $G_0 \ge 10^3$ thermal desorption of O yields too high a $N(O_2)$ (10⁻⁵), contrary to observations
- → O_2 formation is suppressed if O is more tightly held on grains, E(O) ~1600K

 \rightarrow What is the binding energy of 0 on grains?

G₀=multiplier of average radiation field

Oxygen on dust grains

- Formation of OH, H₂O, etc. depends on O residence time on grains
- What is the binding energy of O on grains?
- No prior <u>direct</u> measurement; values adopted in simulations of ISM chemistry are <u>estimates</u> only
 - 800K Tielens and Hagen ApJ (1982)

Atomic Oxygen on Dust Grains Measurement of O Desorption from Porous Water Ice

Atomic Oxygen on Dust Grains Measurement of O Desorption from an Amorphous Silicate Film

He et al., ApJ (2015) in press

silicate pre-coated with O₃ to prevent O+O reactions

Atomic Oxygen on Dust Grains

O Desorption from an Amorphous Silicate Film with

 O_3 on it

He et al., ApJ (2015) in press

Atom - molecule	E _{des} (estimates) (K)	E _{des} (rate eqs. & observ.) (K)	Prior estimates/ measurements (K)	Direct measurement – this work (K)
0	800 ^a	1764 ^b 1800 ^c	1100 ^e 1680	1660 ± 60 on a-H $_2$ O ice 1850 ± 90 on a-silicate
ОН	1260 a	1650-4760 ^d		
0 ₂	1210 a		904 ^b 1200-1400 ^{ef} 910 ^g 900 ^h	
0 ₃			1820 – 2240 ^j	
a Es	Estimate from various authors (see: Stantcheva et al. A&A 391, 1069)			
b ra	rate eqs. fit to data: He et al. PCCP 16, 3493 (2014)			
c to	to satisfy observations: Melnick et al. ApJ 752, 26 (2012)			
d He	He & Vidali ApJ 788, 50 (2014)			
e 0,	O/silicate (Dulieu et al. Sci.Rep.3, 1318 (2013)); O/graphite (Kimber et al. Faraday Disc. 2014)			
$f = 0_2$	O_2 /graphite (Ulbricht et al., Carbon 44, 2931 (2012))			
$g = 0_2$	J_2/U_2 ice (calculation) Acharyya A& A 466, 1005 (2007)			
n 0 ₂ (N	O ₂ /H ₂ 0 ice Noble et al., NMRAS 421, (68 (202)); (calc.)(Lee-Meuwly Faraday Disc. 2014); tunneling for T<15K (Minissale et al. PRL 2013)			
j Me	Mokrane et al., 2009, Romanzin et al. 2011, He & Vidali 2014			

Atomic Oxygen on Dust Grains

Simulation

He et al., ApJ (2015) in press

M.Kaufman

Atomic Oxygen on Dust Grains Simulation

static PDR Hollenbach et al.(2009)

He et al., ApJ (2015) in press

M.Kaufman

Implications of Results for H₂O and O chemistry in the ISM

- Formation of OH, H₂O on warm grains depends on availability of oxygen on the grain surfaces
- Residence time t ~ t₀ e^{E/kT}
- Higher E_b for $O \rightarrow$ more OH and H_2O formation on grains
 - Old E_b used in simulations:
 - for O: $E_b \sim 800$ K and T=50K \rightarrow t \sim tens of microseconds
 - for OH: $E_b \sim 1,260$ K and T=50K \rightarrow t \sim a few seconds
 - New values:
 - for O: $E_b \sim 1,800$ K, t $\sim 10^3 10^4$ sec.
 - for OH: $E_b \sim 1,700-4,800$ K, t > 10³ sec
- Eventually H₂O is desorbed by FUV → more H₂O and less O₂ in the gas phase →consequences for gas-phase chemistry

Formation of Precursors to Amino Acids Hydroxylamine

- NH₂OH hydroxylamine
- Precursor to glycine (NH₂CH₂COOH)
- It has not been detected yet in space
- Experiments
 - UV on NH₃+H₂O ice at 80-130 K (Nishi et al., 1984);
 - 5keV electrons on NH₃+H₂O ice at 10 K (Zheng & Kaiser 2010)
 - NO_{grain}+H+H+H (Congiu et al. 2012; Fedoseev et al. 2012)

J.He, G.Vidali, J-L Lemaire, & R.Garrod, Ap.J. 799, 49 (2015)

Formation of Precursors to Amino Acids Ammonia Oxidation

oxygen

NH₃ depletion vs. O exposure

Formation of Precursors to Amino Acids
Ammonia Oxidation

Mass 33 (NH₂OH) desorption for different O exposures at 70K

He et al., ApJ 799, 49 (2015)

Summary

- Formation of water on warm grains via H+O₃ reaction
- Binding energy of O on porous water ice and amorphous silicate film higher than previous estimate
 - From simulations: OH and H₂O formation on grains enhanced in molecular cloud edge in star forming regions in Orion
 - FUV photodesorption/photodissociaiton of OH and H₂O

→ Consequence for oxygen chemistry in the gas-phase

- Formation of hydroxylamine via oxidation of ammonia ice on grains
 - From simulations: triple hydrogenation of NO at T<12K; NH₃ oxidation is dominant at T>14K
 - NH₃ oxidation relevant in hot core/corino away from the core (cold regions)
 - Detection can be tricky because of the timing of the release of $\rm NH_2OH$ in the gas phase
 - ALMA!

Figure 3. TPD traces of mass 16 amu (blue) and mass 48 amu (green) after deposition of 0 seconds, 240 seconds, and 480 seconds of O/O_2 on 0.2 ML, 0.4 ML, 0.6 ML, and 0.8 ML of O_3 pre-coated amorphous silicate. The heating ramp is 0.5 K s⁻¹. The top row of each panel has the original TPD traces while in the bottom row the contribution of O_3^+ fragmentation to the signal of mass 16 amu has been subtracted.

Formation of Precursors to Amino Acids Ammonia Oxidation

NH₂OH abundance

The dashed line shows the results assuming no barrier for either the NH3 + $O \rightarrow NH_2OH$ or H + HNOH \rightarrow HNHOH reactions.

He et al., ApJ submitted (2014b)

Collaborators

- at SU: Dr. Jianming Shi, Dr. Jiao He, Tyler Hopkins, Zhou Zhang
- at Paris Observatoire: Prof. Jean Louis Lemaire
- at Cornell University: Dr. Rob Garrod
- at San Jose' University: Prof. Michael Kaufman
- at Arcetri Obs.: Dr. John Brucato
- Funding:
 - National Science Foundation Astronomy and Astrophysics Division

Formation of Precursors to Amino Acids Ammonia (NH₃) Desorption

He et al., ApJ submitted (2014b)

Formation of Precursors to Amino Acids Control Experiments

No $NH_3 + O_2$ and $NH_3 + O_3$ reactions

He et al., ApJ submitted (2014b)

Cross-section of H+O_{3grain} reaction

 $I \sim e^{-\phi\sigma t} \phi = flux \sigma = cross-section$

 $\sigma_{\rm H} = 1.6 + / \cdot 0.27 \ {\rm A}^2$ $\sigma_{\rm D} = 0.94 + / \cdot 0.09 \ {\rm A}^2$

